On Computation of Gröbner Bases over \mathbb{F}_{2}

V.P. Gerdt, M.V. Zinin
Laboratory of Information Technologies, JINR

Abstract

In this paper we consider a version of Janet division algorithm and its implementation in C++ oriented to computing degree-reverse-lexicographical Gröbner bases for polynomial ideals in the ring of multivariate polynomials over the finite field \mathbb{F}_{2}. We compare efficiency of the algorithm and its implementation with those for Buchberger's algorithm and with the Gröbner bases software built-in computer algebra systems Singular, CoCoA and with the library FGb available for Maple. As benchmarks for our comparison we use conversion to \mathbb{F}_{2} of the some benchmarks widely used for the Gröbner bases software over Q. Polynomial systems over \mathbb{F}_{2} are of interest in particular for simulation of quantum computation and in cryptoanalysis.

1 Implemented Algorithms

1. Buchberger's algorithm. For preliminary testing of data structures and for subsequent experimental comparison with our implementation of the involutive algorithm [1, 2] we implemented first Buchberger's algorithm [3]. Unlike the former, the latter algorithm examines all S-polynomials and by this reason its computational efficiency heavily depends on the use of criteria to avoid unnecessary S-polynomial reductions.
2. Involutive algorithm. This algorithm, designed by Gerdt and Blinkov [1], who exploited constructive ideas of completion to involution of differential systems, was implemented in its improved version [2] and for degree-reverse-lexicographic order. This particular being heuristically optimal for computation of Gröbner bases over Q is also best for homogeneous generating sets. To analyze solutions in \mathbb{F}_{2} for polynomial systems over \mathbb{F}_{2} that is important, in particular, for application to quantum computation [4] and cryptoanalysis [5] the pure lexicographical order is more appropriate. Development of the package with inclusion of the lexicographic order is planned as the next step.

2 Data structures

Both of the above implementation are to be special modules of the open source software Ginv whose current version 1.2 is available on the Web page http://invo.jinr.ru. By this reason most of the data structures were taken over from Ginv. Functionality of some other structures, for instance, Janet trees, was extended in such a way that interface was preserved. However, two most important data structures - monomial and polynomial were significantly refined under specifical features of \mathbb{F}_{2}. In particular, the main data fields of the monomial class are now the monomial degree (integer number) and the set of exponents for variables (bit array of length 64 or 128 bits).

3 Algorithmic peculiarities of implementation

Since all operations over monomials and polynomials are performed over the finite field \mathbb{F}_{2}, any variable can have degree either 0 or 1 . As a result any monomial order \succ is not admissible. It is easy to see. Let m_{1}, m_{2} be two different monomials satisfying $m_{1} \succ m_{2}$, and let m_{3} be the third monomial such that $m_{3}=\operatorname{lcm}\left(m_{1}, m_{2}\right)$. Then we obtain $m_{1} \cdot m_{3}=m_{2} \cdot m_{3}$ that contradicts the definition of admissible monomial order. This fact can be explicitly verified:

$$
\begin{aligned}
& m_{1}:=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}, m_{2}:=x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}, m_{1} \succ m_{2} \\
& m_{3}:=\operatorname{lcm}\left(m_{1}, m_{2}\right)=x_{1}^{\max \left(i_{1}, j_{1}\right)} \cdots x_{n}^{\max \left(i_{n}, j_{n}\right)} \\
& m_{1} \cdot m_{3}=x_{1}^{\max \left(i_{1}, \max \left(i_{1}, j_{1}\right)\right)} \cdots x_{n}^{\max \left(i_{n}, \max \left(i_{n}, j_{n}\right)\right)}=m_{3} \\
& m_{2} \cdot m_{3}=x_{1}^{\max \left(j_{1}, \max \left(i_{1}, j_{1}\right)\right)} \cdots x_{n}^{\max \left(j_{n}, \max \left(i_{n}, j_{n}\right)\right)}=m_{3}
\end{aligned}
$$

By this reason one has to take care of applicability of the Involutive algorithm.
And one more unusual feature: a basis consisting of a single polynomial may not be a Gröbner basis. We give a simple example.

$$
\langle x y+x+1\rangle=\langle x+1, y\rangle
$$

If one multiplies polynomial $x y+x+1$ by all polynomials in the bivariate ring - there are 15 of them - it becomes obvious that the Gröbner basis consists of two polynomials: $x+1$ and y.

4 Role of criteria

We implemented four involutive criteria [2] for detection of some zero-redundant prolongations as well as equivalent to them two Buchberger's criteria [3] for the case of Buchberger's algorithm. In so doing we adopted the involutive criteria to computation over field \mathbb{F}_{2}. We observe experimentally rather high efficiency of applying the criteria in Buchberger's algorithm. In most cases it achieves $96-100 \%$, i.e. the criteria do not apply for at most 4 from every 100 zero-redundant S-polynomials. As to the Involutive algorithm, the efficiency of criteria is somewhat lower. As a rule it is about $60-85 \%$. With all this going on, and for the benchmarks we used, most often the first criterion (see [2]) was applied.

5 Comparison with other Gröbner bases software

We did comparison of running time for our two implementations with some other computer algebra systems and packages implementing computation of Gröbner bases over \mathbb{F}_{2}, namely, with CoCoA 4.6 [6], Singular 3.0.2 [7] and FGb 1.34 library [8] for Maple. The timings for the standard serial benchmarks eco, katsura, redcyclic and redeco (see [9]) are shown in Figures 1 - 4, respectively.

These timings were obtained on a 2 xOpteron-242 (1.6 Ghz) machine with 6Gb RAM running under Gentoo Linux 2005.1 and with gcc-4.1.0 compiler.

More detailed comparison together with description of the algorithms implemented is given in [10].

Figure 1: Timings for the eco benchmarks

Figure 2: Timings for the katsura benchmarks

Figure 3: Timings for the redcyclic benchmarks

Figure 4: Timings for the redeco benchmarks

References

[1] Gerdt, V.P. and Blinkov,Yu.A.: Involutive Bases of Polynomial Ideals. Mathematics and Computers in Simulation 45 (1998) 519-542, arXiv:math.AC/9912027; Minimal Involutive Bases. Ibid., 543-560, arXiv:math.AC/9912029.
[2] Gerdt, V.P.: Involutive Algorithms for Computing Grobner Bases. In: "Computational Commutative and Non-Commutative Algebraic Geometry", S.Cojocaru, G.Pfister and V.Ufnarovski (Eds.), NATO Science Series, IOS Press, 2005, pp. 199-225. arXiv:math.AC/0501111.
[3] Buchberger, B.: Gröbner Bases: an Algorithmic Method in Polynomial Ideal Theory, In: Recent Trends in Multidimensional System Theory, N.K. Bose (ed.), Reidel, Dordrecht (1985) 184-232.
[4] Gerdt, V.P. and Severyanov, V.M.: An Algorithm for Constructing Polynomial Systems Whose Solution Space Characterizes Quantum Circuits. In: "Quantum Informatics 2005", Yu.I.Ozhigov (Ed.), SPIE Proceedings, Volume 6264, 2006.
[5] Faugère, J.C. and Joux, A.: Algebraic cryptanalysis of Hidden Field Equations (HFE) Using Gröbner Bases. LNCS 2729, Springer-Verlag, 2003, pp. 44-60.
[6] http://cocoa.dima.unige.it/
[7] http://www.singular.uni-kl.de
[8] http://fgbrs.lip6.fr/salsa/Software/
[9] http://www-sop.inria.fr/saga/POL
[10] Gerdt, V.P. and Zinin, M.V. On computation of Gröbner bases over F_{2}. Proceedings of the International Workshop on Computer Algebra and Differential Equations / CADE-2007 (Turku, Finnland, February 20-24, 2007), to appear.

