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Abstract

In this paper we consider a version of Janet division algorithm and its implemen-
tation in C++ oriented to computing degree-reverse-lexicographical Gröbner bases
for polynomial ideals in the ring of multivariate polynomials over the finite field F2.
We compare efficiency of the algorithm and its implementation with those for Buch-
berger’s algorithm and with the Gröbner bases software built-in computer algebra
systems Singular, CoCoA and with the library FGb available for Maple. As bench-
marks for our comparison we use conversion to F2 of the some benchmarks widely
used for the Gröbner bases software over Q. Polynomial systems over F2 are of
interest in particular for simulation of quantum computation and in cryptoanalysis.

1 Implemented Algorithms

1. Buchberger’s algorithm. For preliminary testing of data structures and for sub-
sequent experimental comparison with our implementation of the involutive algo-
rithm [1, 2] we implemented first Buchberger’s algorithm [3]. Unlike the former, the
latter algorithm examines all S-polynomials and by this reason its computational
efficiency heavily depends on the use of criteria to avoid unnecessary S-polynomial
reductions.

2. Involutive algorithm. This algorithm, designed by Gerdt and Blinkov [1], who ex-
ploited constructive ideas of completion to involution of differential systems, was
implemented in its improved version [2] and for degree-reverse-lexicographic order.
This particular being heuristically optimal for computation of Gröbner bases over
Q is also best for homogeneous generating sets. To analyze solutions in F2 for poly-
nomial systems over F2 that is important, in particular, for application to quantum
computation [4] and cryptoanalysis [5] the pure lexicographical order is more ap-
propriate. Development of the package with inclusion of the lexicographic order is
planned as the next step.

2 Data structures

Both of the above implementation are to be special modules of the open source software
Ginv whose current version 1.2 is available on the Web page http://invo.jinr.ru. By
this reason most of the data structures were taken over from Ginv. Functionality of some
other structures, for instance, Janet trees, was extended in such a way that interface was
preserved. However, two most important data structures – monomial and polynomial –
were significantly refined under specifical features of F2. In particular, the main data
fields of the monomial class are now the monomial degree (integer number) and the set
of exponents for variables (bit array of length 64 or 128 bits).

377



3 Algorithmic peculiarities of implementation

Since all operations over monomials and polynomials are performed over the finite
field F2, any variable can have degree either 0 or 1. As a result any monomial order �
is not admissible. It is easy to see. Let m1, m2 be two different monomials satisfying
m1 � m2, and let m3 be the third monomial such that m3 = lcm(m1, m2). Then we
obtain m1 · m3 = m2 · m3 that contradicts the definition of admissible monomial order.
This fact can be explicitly verified:

m1 := xi1
1 · · ·xin

n , m2 := xj1
1 · · ·xjn

n , m1 � m2 ,

m3 := lcm(m1, m2) = x
max(i1,j1)
1 · · ·xmax(in,jn)

n ,

m1 · m3 = x
max(i1,max(i1,j1))
1 · · ·xmax(in,max(in,jn))

n = m3 ,

m2 · m3 = x
max(j1,max(i1,j1))
1 · · ·xmax(jn,max(in,jn))

n = m3 .

By this reason one has to take care of applicability of the Involutive algorithm.
And one more unusual feature: a basis consisting of a single polynomial may not be a

Gröbner basis. We give a simple example.

〈xy + x + 1〉 = 〈x + 1, y〉
If one multiplies polynomial xy + x + 1 by all polynomials in the bivariate ring – there
are 15 of them – it becomes obvious that the Gröbner basis consists of two polynomials:
x + 1 and y.

4 Role of criteria

We implemented four involutive criteria [2] for detection of some zero-redundant pro-
longations as well as equivalent to them two Buchberger’s criteria [3] for the case of
Buchberger’s algorithm. In so doing we adopted the involutive criteria to computation
over field F2. We observe experimentally rather high efficiency of applying the criteria
in Buchberger’s algorithm. In most cases it achieves 96–100%, i.e. the criteria do not
apply for at most 4 from every 100 zero-redundant S-polynomials. As to the Involutive
algorithm, the efficiency of criteria is somewhat lower. As a rule it is about 60–85%. With
all this going on, and for the benchmarks we used, most often the first criterion (see [2])
was applied.

5 Comparison with other Gröbner bases software

We did comparison of running time for our two implementations with some other
computer algebra systems and packages implementing computation of Gröbner bases over
F2, namely, with CoCoA 4.6 [6], Singular 3.0.2 [7] and FGb 1.34 library [8] for Maple.
The timings for the standard serial benchmarks eco, katsura, redcyclic and redeco (see [9])
are shown in Figures 1 – 4, respectively.

These timings were obtained on a 2xOpteron-242 (1.6 Ghz) machine with 6Gb RAM
running under Gentoo Linux 2005.1 and with gcc-4.1.0 compiler.

More detailed comparison together with description of the algorithms implemented is
given in [10].
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Figure 1: Timings for the eco benchmarks
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Figure 2: Timings for the katsura benchmarks
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Figure 3: Timings for the redcyclic benchmarks
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Figure 4: Timings for the redeco benchmarks
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